
Spring Boot: From 2 to 3 and
beyond

Copyright © 2022 VMware, Inc. or its affiliates.

Stéphane Nicoll
@snicoll[@mastodon.online]
stephane.nicoll@broadcom.com

Spring Meetup Paris, January 2024

Cover w/ Image

● Spring Boot 3 Migration

● What’s New?

● What’s Next?

● Q/A

Agenda

Spring Boot 3
Migration

Spring Framework Support

Spring Boot Support

Migration pre-steps

1. Upgrade to the latest 2.7.x release (2.7.18).

2. Upgrade to Java 17 at least (why not 21?).

3. Check deprecations in code.

4. Check deprecations in application properties (properties migrator).

5. Using Spring Security? Upgrade to Spring Security 5.8 first.

6. Check for warnings in your logs!

7. Check for dependency version overrides / Use our BOM

https://github.com/spring-projects/spring-security/wiki/Spring-Security-6.0-Migration-Guide#upgrade-to-the-latest-58x-version

Migrate to Spring Boot 3

You are now ready to get started!

● Upgrade to the latest 3.0.x (3.0.13).

● Each feature release has dedicated release notes.

● Each major release has a specific migration guide.

● The release notes link to more specific release notes and/or migration guides for the
Spring Modules you might be using.

https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-3.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-3.0-Migration-Guide

Jakarta EE 9+ upgrade

A community effort

● javax.* → jakarta.* namespace

● Api spec dependencies upgrade

● Open source libraries upgrade

● Synchronizing with Spring Boot supported libraries

Migrate to Spring Boot 3

Rinse & Repeat

● Upgrade to the latest 3.1.x (3.1.8 at this time) and follow the dedicated release notes.

● One more time and you are on 3.2.x!

��

https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-3.1-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-3.2-Release-Notes

https://www.youtube.com/watch?v=HrRQExD3xow

What’s New in
Spring Boot 3?

Virtual Threads
Project Loom

A new degree of scalability for Spring MVC applications

HTTP Client API
Revisited

RestClient client = RestClient.create(baseUrl);
ResponseEntity<Person> person =
client.get().uri("/persons/1")
 .accept(MediaType.APPLICATION_JSON)
 .retrieve()
 .toEntity(Person.class);

Spring AOT
GraalVM Native Images

A new deployment variant

As an alternative to classic HotSpot deployment

GraalVM advantages

 Instant
startup

 Milliseconds for
native instead of
seconds for the

JVM

 No warmup

 Peak performance
available

immediately

 Low resource
 usage

 Lower memory
footprint and no
JIT compilation

 Reduced
surface attack

 Closed world of
dependencies with
explicit reflection
and serialization

 Compact
packaging

 Smaller
container easier

to deploy

GraalVM trade-offs

Very slow
compilation
Minutes instead

of seconds

Compatibility

Additional metadata
required for reflection,

proxies, resources

Closed-world
Assumptions

Bean conditions fixed at build time
No dynamic class loading

Use cases for native images
JVM likely better

Assess

Recommended

Low memory
and CPU Scale to

zero

Function as
a Service

Microservices
Backoffices

Container
image

distribution

Very frequent
deployment High traffic

website

Unsupported
dependency

Big
monolithic
application

Huge
memory

and
CPU

Agent-based
observability

Kubernetes

Building a native image with GraalVM

Process all classes
in a fixed classpath

Using the “native-image" binary

Perform
static analysis

Compile code + data
into a single binary

+

Reachability
Metadata

How Spring adapts for native

Perform
static analysis

Compile code + data
into a single binary

Infer metadata if
needed

Generate optimized
version of the
application context

Process all classes
in a fixed classpath

Reachability
Metadata

+

Also applies to resources, JDK proxies… See class metadata features

https://github.com/oracle/graal/blob/master/docs/reference-manual/native-image/Limitations.md#class-metadata-features-require-configuration

AOT processing with Spring

App compiled

Compiled sources

resources

AOT is done

Compiled sources

resources

AOT sources

GraalVM config

Compiled AOT
sources

Native binary

Native application

:generateAotSources
+

:aotClasses

:nativeCompile

Application Jar

AOT optimized app
:bootJar

https://www.youtube.com/watch?v=TS4DpYSmfXk

Observability
Metrics and Tracing

Unified through Micrometer

Across the runtime stack

Instrumenting libraries for observability

Instrumentation strategies

● Java agent, at the bytecode level

● Using public extension points

● Direct instrumentation in the library

Micrometer 1.10.0
with io.micrometer.observation.Observation

Metrics, Logs correlation and Traces in Spring apps

Creating your own observations

String conference = "Spring Meetup";
return Observation.createNotStarted("spring.talk", registry)
 .lowCardinalityKeyValue("conference", conference)
 .observe(() -> {
 logger.info("Talk about Observations");
 return restClient.get()
 .uri("https://example.com/conferences/{id}" , conference)
 .retrieve().body(String.class);
 });

https://www.youtube.com/watch?v=lngzUSt1AA0

Service Connection
Improved support for Testcontainers and

Docker Compose

See “Docker Compose Support in Spring Boot 3.1” and
“Improved Testcontainers Support in Spring Boot 3.1”.

https://spring.io/blog/2023/06/21/docker-compose-support-in-spring-boot-3-1
https://spring.io/blog/2023/06/23/improved-testcontainers-support-in-spring-boot-3-1

Problem Details Support
RFC 7807

HTTP/1.1 404
Content-Type: application/problem +json

{
 "type": "https://spring.io/api/problems/unknown-project" ,
 "title": "Unknown Spring project" ,
 "status": 404,
 "detail": "No project found for id 'spring-unknown" ,
 "instance": "/projects/spring-unknown"
}

@ExceptionHandler(UnknownProjectException.class)
ProblemDetail handleUnknownProjectException(UnknownProjectException exc) {
 ProblemDetail problemDetail = ProblemDetail.forStatus(HttpStatus.NOT_FOUND);
 problemDetail.setTitle("Unknown Project");
 problemDetail.setType(URI.create(
 "https://example.org/problems/unknown-project"));
 problemDetail.setDetail(String.format(
 "No project found with slug '%s'", exc.getSlug()));
 return problemDetail;
}

JDBC Client API
Revisited

JdbcClient client = JdbcClient.create(dataSource);
Optional<Person> person = client.sql("SELECT ... WHERE ID =
:id")
 .param("id", 3)
 .query(Person.class)
 .optional();

Java Interface Clients
HTTP, RSocket, …

interface SpringProjectsService {

 @GetExchange("/projects/{slug}")
 ProjectSummary findProject(@PathVariable String slug);

}

SSL Improvements
(Reloadable) SSL Bundles

See “Securing Spring Boot Applications With SSL” and “SSL
hot reload in Spring Boot 3.2.0”.

https://spring.io/blog/2023/06/07/securing-spring-boot-applications-with-ssl
https://spring.io/blog/2023/11/07/ssl-hot-reload-in-spring-boot-3-2-0
https://spring.io/blog/2023/11/07/ssl-hot-reload-in-spring-boot-3-2-0

What’s Next?*

*under consideration

OpenJDK Startup
Class Data Archive

See “CDS On Spring Framework 6.1”

https://spring.io/blog/2023/12/04/cds-with-spring-framework-6-1

OpenJDK Startup
Project Leyden

“CDS on steroids” for Spring deployments on HotSpot

AOT on the JVM
Revisited

For HotSpot, CRaC, Leyden

Q/A

Tanzu Academy

Thank you
Contact me at @snicoll[@mastodon.online]

© 2022 Spring. A VMware-backed project.

