
Native Support in Spring Boot 3

Copyright © 2022 VMware, Inc. or its affiliates.

Stéphane Nicoll
@snicoll[@mastodon.online]
stephane.nicoll@broadcom.com

Touraine Tech, February 2024



Cover w/ Image

● Why compile to Native?

● Support strategies for Frameworks

● AOT processing in Spring

● Will this work with my app?

● Developer cookbook

Agenda



Support Timeline



Spring Boot 2.7.x support



Migration pre-steps

1. Upgrade to the latest 2.7.x release (2.7.18).

2. Upgrade to Java 17 at least (why not 21?).

3. Check deprecations in code.

4. Check deprecations in application properties (properties migrator).

5. Using Spring Security? Upgrade to Spring Security 5.8 first.

6. Check for warnings in your logs!

7. Check for dependency version overrides / Use our BOM

https://github.com/spring-projects/spring-security/wiki/Spring-Security-6.0-Migration-Guide#upgrade-to-the-latest-58x-version


Migrate to Spring Boot 3

You are now ready to get started!

● Upgrade to the latest 3.0.x (3.0.13).

● Each feature release has dedicated release notes.

● Each major release has a specific migration guide.

● The release notes link to more specific release notes and/or migration guides for the 
Spring Modules you might be using.

● Upgrade to the latest 3.1.x (3.1.8 at this time) and follow the dedicated release notes.

● One more time and you are on 3.2.x!

��

https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-3.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-3.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-3.1-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-3.2-Release-Notes


Why compile to 
Native?



GraalVM advantages

 Instant 
startup

 Milliseconds for 
native instead of 
seconds for the 

JVM

 No warmup
 

 Peak performance 
available 

immediately

 Low resource
 usage

 Lower memory 
footprint and no 
JIT compilation

 Reduced 
surface attack

 Closed world of 
dependencies with 
explicit reflection 
and serialization

 Compact 
packaging

 Smaller 
container easier 

to deploy



GraalVM trade-offs

Very slow 
compilation
Minutes instead 

of seconds

Compatibility
 

Additional metadata
required for reflection,

proxies, resources

Closed-world
Assumptions

Bean conditions fixed at build time
No dynamic class loading



Use cases for native images
JVM likely better

Assess

Recommended

Low memory 
and CPU Scale to 

zero

Function as 
a Service

Microservices
Backoffices

Container 
image 

distribution

Very frequent 
deployment High traffic 

website

Unsupported
dependency

Big 
monolithic 
application

Huge 
memory 

and 
CPU

Agent-based
observability

Kubernetes



Started with “Spring Native”



Support Strategies for 
Frameworks



Building a native image with GraalVM

Process all classes
in a fixed classpath

Using the “native-image" binary

Perform
static analysis

Compile code + data 
into a single binary

+

Reachability
Metadata



How Spring adapts for native

Perform
static analysis

Compile code + data 
into a single binary

Infer metadata if 
needed

Generate optimized 
version of the 
application context

Process all classes
in a fixed classpath

Reachability
Metadata

+

Also applies to resources, JDK proxies… See class metadata features

https://github.com/oracle/graal/blob/master/docs/reference-manual/native-image/Limitations.md#class-metadata-features-require-configuration


AOT processing in 
Spring



AOT processing with Spring

App compiled

Compiled sources

resources

AOT is done

Compiled sources

resources

AOT sources

GraalVM config

Compiled AOT 
sources

Native binary

Native application

:generateAotSources
+

:aotClasses

:nativeCompile

Application Jar

AOT optimized app
:bootJar



AOT phases in Spring

Generating functional configuration

● Skips the @Configuration model at runtime

● Generate available, debuggable source code

● Perfect fit with GraalVM native image static analysis

● Reachability metadata generated as needed



Generating AOT sources

Context refresh 
for AOT

Generate source code 
+ hints

Running this code will 
re-create the same 
state at runtime

Detect classpath,
environment, and main 
class

Only bean definitions 
are created,
no bean instances!





Will this work with 
my app?



“Closed world” assumptions

Runtime flexibility constraints

● Application Classpath is fixed at build time

● Environment changes impacting the context are not supported

○ “spring.some.feature.enabled=true”

○ Spring profile changes that contribute new beans

Native image constraints

● Java agents are not supported (at runtime)

● Reading/manipulating bytecode: please don’t



JVM test strategies

● Running your app in AOT mode on the JVM
“-Dspring.aot.enabled=true”

● Use Spring’s testing utilities for advanced cases
(RuntimeHintsAgent, RuntimeHintsPredicates)



Run your test suite in a native image

Maven: mvn -PnativeTest test

Gradle: gradle nativeTest



Reachability metadata repository

 Native image configuration for JVM libraries
• Main goal remains direct inclusion in libraries
• This repository intends to fill the gap*

 
 Automated testing via native build tools + dedicated 

CI infrastructure
 
 Initially a GraalVM and Spring driven effort

 Guidelines on how to craft native configuration
• Runtime initialization by default
• No build-time initialization
• Reachability based native configuration
• Mandatory native testing

* https://github.com/oracle/graalvm-reachability-metadata 



Deployment strategies
Buildpacks

 Container based native builds based on 
Buildpacks

 
 
 Application compilation support
 
 
 Requires Docker but no local GraalVM 

installation
 
 Produces a Linux container image

• x64 is supported
• ARM support work in progress, follow 

buildpacks/lifecycle#435 for updates

 Native Build Tools
 
 Started as a collaboration between Spring 

and GraalVM team, and recently the 
Micronaut team has joined

 
 Application compilation and testing 

support
 
 Requires local GraalVM native-image 

compiler
 
 Produces a native executable

• Linux (x64, ARM)
• MacOS (x64, ARM)
• Windows (x64)

https://github.com/buildpacks/lifecycle/issues/435


Spring apps adoption 🍃
Being part of the GraalVM community 🤗

🆕 developers and use cases



Q&A

https://github.com/snicoll/demo-aot-native



Thank you
Contact me at @snicoll[@mastodon.online]

© 2022 Spring. A VMware-backed project.


